Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Food Chem ; 448: 139043, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552463

RESUMO

This study aimed to evaluate the potential of the bilayer emulsions stabilized with casein/butyrylated dextrin nanoparticles and chitosan as fat substitutes in preparing low-calorie sponge cakes. Among the different cake groups, the substitution of bilayer emulsions at 60% exhibited comparable baking properties, appearance, texture characteristics and stable secondary structure to fat. The specific volume and height were increased by 36.94% and 22%, respectively, while the cake showed higher lightness (L*) in the cores and softer hardness in the crumb. In addition, the moisture content of cakes was increased while the water activity remained unchanged. These results showed that casein/butyrylated dextrin bilayer emulsion was a potential fat substitute for cake products at the ratio of 60% with the desirable characteristics.


Assuntos
Caseínas , Quitosana , Dextrinas , Emulsões , Substitutos da Gordura , Nanopartículas , Quitosana/química , Nanopartículas/química , Caseínas/química , Dextrinas/química , Emulsões/química , Substitutos da Gordura/química , Culinária
2.
J Microbiol Biotechnol ; 34(5): 1-10, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38379287

RESUMO

The rise in plant-based food consumption is propelled by concerns for sustainability, personal beliefs, and a focus on healthy dietary habits. This trend, particularly in alternative meat, has attracted attention from specialized brands and eco-friendly food companies, leading to increased interest in plant-based alternatives. The dominant plant-based proteins, derived mainly from legumes, include soy protein isolates, which significantly impact sensory factors. In the realm of plant-based fats, substitutes are categorized into fat substitutes based on fats and fat mimetics based on proteins and carbohydrates. The production of these fats, utilizing gums, emulsions, gels, and additives, explores characteristics influencing the appearance, texture, flavor, and storage stability of final plant-based products. Analysis of plant-based proteins and fats in hamburger patties provides insights into manufacturing methods and raw materials used by leading alternative meat companies. However, challenges persist, such as replicating meat's marbling characteristic and addressing safety considerations in terms of potential allergy induction and nutritional supplementation. To enhance functionality and develop customized plant-based foods, it is essential to explore optimal combinations of various raw materials and develop new plant-based proteins and fat separation.

3.
Food Chem ; 443: 138476, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306908

RESUMO

The positional distribution of palmitic acid (PA) in human milk fat substitutes (HMFSs) plays a pivotal role in mimicking the nutritional profile of human milk fat for nourishing non-breastfed infants. This study innovatively introduced a streamlined enzymatic process for preparing HMFSs rich in sn-2 PA using palm stearin, a PA-rich source without the necessity for positional distribution of PA. The initial step involved enhancing the sn-2 PA concentration through enzymatic interesterification using Lipase UM1, which exhibited superior catalytic efficiency than Novozym 435. This process increased the sn-2 PA level from 40.98 % to 64.51 %. Subsequently, acidolysis was employed to reduce PA levels by replacing PA at sn-1,3 positions using sn-1,3-regioselective lipases. The PA content decreased from 60.64 % to 26.73 %, simultaneously raising the relative sn-2 PA concentration to 71.57 %, meeting the benchmarks for HMFSs. This study establishes a robust conceptual framework for the prospective industrial synthesis of HMFSs.


Assuntos
Substitutos da Gordura , Leite Humano , Lactente , Humanos , Animais , Estudos Prospectivos , Triglicerídeos , Ácido Palmítico , Catálise , Ácidos Graxos , Leite
4.
Heliyon ; 10(1): e24056, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38268589

RESUMO

Over the past eight years, bee products such as wax, honey, propolis, and pollen have generated intense curiosity about their potential food uses; to explore these possibilities, this review examines the nutritional benefits and notable characteristics of each product related to the food industry. While all offer distinct advantages, there are challenges to overcome, including the risk of honey contamination. Indeed, honey has excellent potential as a healthier alternative to sugar, while propolis's remarkable antibacterial and antioxidant properties can be enhanced through microencapsulation. Pollen is a versatile food with multiple applications in various products. In addition, the addition of beeswax to oleogels and its use as a coating demonstrate significant improvements in the quality and preservation of environmentally sustainable foods over time. This study demonstrates that bee products and apitherapy are essential for sustainable future food and innovative medical treatments.

5.
Adv Colloid Interface Sci ; 321: 103011, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37826977

RESUMO

Although fat is one of the indispensable components of food flavor, excessive fat consumption could cause obesity, metabolism syndromes and an imbalance in the intestinal flora. In the pursuit of a healthy diet, designing fat reducing foods by inhibiting lipid digestion and calorie intake is a promising strategy. Altering the gastric emptying rates of lipids as well as acting on the lipase by suppressing the enzymatic activity or limiting lipase diffusion via interfacial modulation can effectively decrease lipolysis rates. In this review, we provide a comprehensive overview of colloid-based strategies that can be employed to retard lipid hydrolysis, including pancreatic lipase inhibitors, emulsion-based interfacial modulation and fat substitutes. Plants-/microorganisms-derived lipase inhibitors bind to catalytic active sites and change the enzymatic conformation to inhibit lipase activity. Introducing oil-in-water Pickering emulsions into the food can effectively delay lipolysis via steric hindrance of interfacial particulates. Regulating stability and physical states of emulsions can also affect the rate of hydrolysis by altering the active hydrolysis surface. 3D network structure assembled by fat substitutes with high viscosity can not only slow down the peristole and obstruct the diffusion of lipase to the oil droplets but also impede the transportation of lipolysis products to epithelial cells for adsorption. Their applications in low-calorie bakery, dairy and meat products were also discussed, emphasizing fat intake reduction, structure and flavor retention and potential health benefits. However, further application of these strategies in large-scale food production still requires more optimization on cost and lipid reducing effects. This review provides a comprehensive review on colloidal approaches, design, principles and applications of fat reducing strategies to meet the growing demand for healthier diet and offer practical insights for the low-calorie food industry.


Assuntos
Substitutos da Gordura , Lipídeos , Lipídeos/química , Coloides , Lipase/química , Emulsões/química , Digestão
6.
Gels ; 9(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37754380

RESUMO

The aim of this study was to assess the gelling potential of chiral oxalamide derivatives in vegetable oils. Special emphasis was given to the potential applications of the examined oil gels as sustained delivery systems and as fat substitutes in food products. The applicability of oil gelators is envisaged in food, cosmetics, and the pharmaceutical industry. The regulations requiring the elimination of saturated fats and rising concerns among consumers health motivated us to investigate small organic molecules capable of efficiently transforming from liquid oil to a gel state. The oxalamide organogelators showed remarkable gelation efficiency in vegetable oils, thermal and mechanical stability, self-healing properties, and a long period of stability. The physical properties of the gels were analysed by TEM microscopy, DSC calorimetry, and oscillatory rheology. The controlled release properties of acetylsalicylic acid, ibuprofen, and hydrocortisone were analysed by the LC-MS method. The influence of the oil type (sunflower, soybean, and olive oil) on gelation efficiency of diverse oxalamide derivatives was examined by oscillatory rheology. The oxalamide gelators showed thermoreversible and thixotropic properties in vegetable oils with a minimum gelation concentration of just 0.025 wt%. The substitution of palm fats with gelled sunflower oil applied in cocoa and milk spreads at gelator concentrations lower than 0.2 wt% have shown promising viscoelastic properties compared to that of the original food products.

7.
J Agric Food Chem ; 71(37): 13906-13919, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695236

RESUMO

Although numerous studies indicate that formula-fed infants are more prone to obesity than breastfed ones, the underlying reasons have not been fully elucidated. This study aimed to determine the impact of human milk fat substitutes (HMFS) on the lipid metabolism of first-weaned Sprague Dawley rats. The findings revealed that administering HMFS did not affect the body weight of the rats (control: 298.38 ± 26.73 g, OPO (1,3-dioleic acid-2-palmitoyl triglyceride): 287.82 ± 19.85 g and HMFS: 302.31 ± 19.21 g), but it significantly decreased their body fat content (control: 28.70 ± 1.17 cm3, OPO: 22.51 ± 1.10 cm3 and HMFS: 14.90 ± 0.95 cm3) (p < 0.05). Lipidome analysis revealed that glycerophospholipid was the primary differentiating lipid present in the liver of HMFS-fed rats. The abundance of Bacteroides significantly increased in the intestine of HMFS-fed rats (p < 0.05), and their short-chain fatty acid (SCFA) content significantly increased (p < 0.05). The multi-omics correlation analysis established the "Bacteroidetes-SCFAs-Glycerophospholipid pathway" as a potential mechanism by which administering HMFS affects body fat buildup in first-weaned rats. Additionally, it was found that HMFS administration significantly promoted lipid metabolism in the rat liver at both the gene and protein levels (p < 0.05). These findings serve to underscore the nutritional benefits of HMFS for infants.


Assuntos
Substitutos da Gordura , Metabolismo dos Lipídeos , Lactente , Ratos , Humanos , Animais , Leite Humano , Ratos Sprague-Dawley , Glicerofosfolipídeos
8.
Food Sci Nutr ; 11(9): 4898-4911, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701231

RESUMO

Animal proteins have in the past been used in food production due to their functional properties that range from gelation and emulsification to foaming ability and stability. However, animal husbandry has been shown to be a major contributor to global warming and climate change. Consequently, there has been a drive toward the use of alternative proteins, for example, proteins from plant sources which are perceived to be cheaper, healthier, and sustainable. The use of trans and saturated fatty acids in the food industry has been associated with various health issues that include an increased risk of metabolic disorders. This has resulted in an increased search for fat substitutes that are healthier and sustainable. To contribute toward a reduction in the consumption of meats from animal sources and the consumption of trans and saturated fatty acids, the formulation of plant-based meat and fat analogs/substitutes has been carried out. However, there has been a lower acceptance of these meat or fat substitutes which was attributed to their sensorial and textural properties that fail to mimic or resemble real fat or meat. Therefore, this review aims to discuss the advances that have been made when it comes to plant-based meat and fat substitutes. Additionally, consumer perception and acceptance of these products will be reviewed as well as future markets will be discussed and the opportunities and challenges that exist in the formulation of these products will be explored.

9.
Food Res Int ; 170: 112959, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316007

RESUMO

There is currently an increasing trend in the consumption of meat analogs and fat substitutes due to the health hazards by excessive consumption of meat. Simulating the texture and mouthfeel of meat through structured plant-derived polymers has become a popular processing method. In this review, the mechanical structuring technology of plant polymers for completely replacing real meat is mainly introduced in this review, which mainly focuses on the parameters and principles of mechanical equipment for the production of vegan meat. The difference in composition between plant meat and real meat is mainly reflected in the protein, and particular attention should be paid to the digestive characteristics of plant meat protein in the gastrointestinal tract. Therefore, the differences in the protein digestibility properties of meat analogs and real meat is discussed in this review, focusing primarily on protein digestibility and peptide/amino acid composition of mechanically structured vegan meats. In terms of fat substitutes for meat products, the types of plant polymer colloidal systems used for meat fat substitutes is comprehensively introduced, including emulsion, hydrogel and oleogel.


Assuntos
Substitutos da Gordura , Proteólise , Carne , Proteínas de Plantas , Polímeros , Tecnologia
10.
Foods ; 12(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36766126

RESUMO

This study evaluated the effects of palm shortenings (PS) with varying melting ranges (MR) on the physicochemical, emulsion stability, rheological, thermal, textural, and microtextural properties of chicken meat emulsions. Six emulsions were developed: control (chicken skin), sample A (PS at MR of 33-36 °C), sample B (PS at MR of 38-42 °C), sample C (PS at MR of 44-46 °C), sample D (PS at MR of 45-49 °C), and sample E (PS at MR of 55-60 °C). There were no significant differences in cooking loss, pH, and water-holding capacity between the meat emulsions, with sample E providing a more stable emulsion with the lowest fat content and highest moisture content. The colour profiles and protein thermal stabilities of the fat-replaced meat emulsions were not significantly different from the control. The hardness, shear force, storage, and loss moduli increased when palm shortenings with higher melting range were used, with sample E having the highest values. Sample E also exhibited a smaller pore size and more compact structure, and thus was well-emulsified compared to the other samples. Overall, palm shortenings-particularly those with a melting range of 55-60 °C-have the potential to replace chicken skin in meat emulsions.

11.
Food Res Int ; 163: 112168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596114

RESUMO

A novel and effective approach based on the two-step ethanolysis-esterification strategy was proposed for the controllable and simultaneous preparation of 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL), 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1,3-dilinoleoyl-2-palmitoyl-glycerol (LPL) with adjustable proportions. Enzymatic ethanolysis of fractionated palm stearin was carried out to yield 2-monopalmitoylglycerol (79.4 ± 0.6 %) with over 91.0 % purity at the optimal conditions. The immobilized Candida sp. lipase (CSL) on octyl-functionalized ordered mesoporous silica (OMS-C8) was applied to re-esterify 2-monopalmitoylglycerol with oleic acid and linoleic acid for the simultaneous production of OPL, OPO, and LPL. The total content in the final products was 81.5 %, with 91.3 % of palmitic acid (PA) content at the sn-2 position. Besides, OPL/OPO/LPL was conveniently prepared with suitable proportions for worldwide infants by adjusting the ratio of acyl donors. This paper provides a novel and effective two-step ethanolysis-esterification strategy for the development of human milk fat substitutes (HMFS).


Assuntos
Substitutos da Gordura , Leite Humano , Lactente , Humanos , Esterificação , Ácido Palmítico , Ácido Oleico
12.
Foods ; 11(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36553772

RESUMO

The effect of the incorporation of rice bran wax (5%; 7%) or candelilla wax (3%; 7%) for production of hemp-oil-based oleogels was analyzed in this study. The experiment was carried out to replace between 0 and 100% of animal fat in meat patties with oleogels. Free fatty acids (FFAs), acid value (AV), oxidative stability index (OSI), conjugated diene value, malondialdehyde value, physicochemical properties, and the sensory properties of oleogels and meat patties were studied. The results indicated that hemp oil had more polyunsaturated fatty acids and lower oxidative stability when compared to oleogels. The OSI for oil was 3.1 h, while for oleogels it was 3.4-3.6 (candelilla case) or 3.7-3.9 (rice bran). Oleogels were able to match pork fat texture properties such as spreadability and adhesiveness in meat patties. However, sensory data for cooked meat patties with animal fat fully replaced by oleogels revealed that samples with 100% pork fat had higher juiciness and taste intensity. Our results showed that a wax-based oleogel had a higher oxidative stability and nutritional profile, but further investigations to mimic pork fat properties in meat patties are necessary.

13.
Food Chem ; 397: 133677, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35907389

RESUMO

Developing novel fats with zero trans and low saturated fatty acids represents a research hotspot in the colloid field today. Herein, natural candelilla (Euphorbia cerifera) wax was used as an oleogelator to construct oleogel systems, and can make strong oleogels at low concentrations (3 wt%). These oleogels were further employed as continuous phases to fabricate surfactant-free W/O emulsions with excellent stability (at least 30 days). Microstructural observation confirmed that the stability of emulsions was attributed to the interface and bulk phase crystallization of wax. All oleogels and emulsions were pseudoplastic fluids whose gel properties could be tuned via regulating oleogelator concentration. Water content also influenced the emulsion rigidity, denoting the droplets acted as "active fillers". Additionally, the emulsions displayed a temperature-responsive property, beneficial in mimicking the "fat-like" melt-in-the-mouth effect. These findings greatly enrich the formulation of surfactant-free W/O emulsions, providing technical support for the development of novel fats.


Assuntos
Euphorbia , Emulsões/química , Compostos Orgânicos , Reologia , Tensoativos/química , Temperatura , Água/química
14.
Foods ; 11(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35804801

RESUMO

The objective of this study was to analyze the impact of partial replacement of beef tallow with sunflower, canola, linseed, olive oil and milk fat on physical properties, oxidation stability, fatty acid profile and PAHs (polycyclic aromatic hydrocarbons) content of beef burgers. Studies have shown a strong relationship between the fatty acid profile and the PAH content (especially of the heavy PAHs). The partial replacement of beef tallow with oils and milk fat (MF) contributed to a change in the fatty acid profile and a reduction in the hardness of the burgers. The highest PAH content was found in samples with canola oil (CO), which had the highest levels of monounsaturated fatty acids (MUFA), and in the control group (CON) without fat substitution, which had the highest levels of saturated fatty acids (SFA) and trans conformations. Substitution of animal fat with vegetable oils contributed to a change in the color of the burgers' surface, as there was a statistically significant increase in the L* color component and a decrease in the a* component. The burgers with canola oil (CO) and linseed oil (LO) were the most susceptible to oxidation, whereas the burgers with reduced fat content (CON_LOW FAT) were the most stable in terms of oxidation, where the malondialdehyde (MDA) content was 32.8% lower compared with the control group (CON). The studies confirm that partial replacement of beef tallow with vegetable oils and milk fat and reduction in fat content in burgers to be grilled can be an effective way to change their fatty acid profile and reduce the cyclization reaction of organic compounds leading to the formation of PAH. Correlation coefficient analysis showed that there is a relationship between fatty acid profile and the presence of selected PAHs in grilled beef burgers. The results of this study indicate that replacing beef tallow with vegetable oils is a promising approach in designing meat products with controlled PAH content.

15.
Food Chem ; 390: 133171, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35551020

RESUMO

Nowadays, breast milk is considered as the ideal food for infants owing to the most common oleic acid-palmitic acid-oleic acid (OA-PA-OA) fatty acid distribution of the human milk fat (HMF). This study reports the synthesis of 1,3-dioleoyl-2-palmotoylglycerol (OPO)-rich human milk fat substitutes in a two-step enzymatic acidolysis reaction with Rhizomucor miehei lipase (RML) immobilized on magnetic multi-walled carbon nanotubes(mMWCNTs). The immobilized RML (RML-mMWCNTs) showed better thermal and pH stability, convenient recovery and reusability than the free soluble form. Under optimized reaction conditions (1:8 tripalmitin (PPP)/OA, 10%wt. enzyme, 50 °C, 5 h), PA content at the sn-2 position and OA incorporation at the sn-1,3 positions reached 93.46% and 59.54%, respectively. Comparison tests have also showed that RML-mMWCNTs has better catalytic activity and reusability than the commercial lipase Lipozyme RM IM. The results suggest that RML-mMWCNTs is a promising biocatalyst for the synthesis of OPO-rich TAGs with potential use in infant formulas.


Assuntos
Nanotubos de Carbono , Ácido Palmítico , Feminino , Humanos , Lactente , Fórmulas Infantis/química , Lipase/metabolismo , Fenômenos Magnéticos , Leite Humano/química , Ácido Oleico/análise , Ácido Palmítico/análise , Rhizomucor , Triglicerídeos/química
16.
Life (Basel) ; 12(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35207476

RESUMO

Human milk is generally regarded as the best choice for infant feeding. Human milk fat (HMF) is one of the most complex natural lipids, with a unique fatty acid composition and distribution and complex lipid composition. Lipid intake in infants not only affects their energy intake but also affects their metabolic mode and overall development. Infant formula is the best substitute for human milk when breastfeeding is not possible. As the main energy source in infant formula, human milk fat substitutes (HMFSs) should have a composition similar to that of HMF in order to meet the nutritional needs of infant growth and development. At present, HMFS preparation mainly focuses on the simulation of fatty acid composition, the application of structured lipids and the addition of milk fat globule membrane (MFGM) supplements. This paper first reviews the composition and structure of HMF, and then the preparation development of structured lipids and MFGM supplements are summarized. Additionally, the evaluation and regulation of HMFSs in infant formula are also presented.

17.
Crit Rev Food Sci Nutr ; 62(1): 145-159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32876475

RESUMO

The lipid phase of infant formulas is generally composed of plant-based lipids structured with a high concentration of palmitic acid (C16:0) esterified at the sn-2 position of triacylglycerol since this structure favors the absorption and metabolism of fatty acids. Palm oil is commonly used to make up the lipid phase of infant formulas due to its high concentration of palmitic acid and solids profile and melting point similar to human milk fat. However, the addition of palm oil to infant formulas has been associated with the presence of 3-monochloropropane-1,2-diol (3-MCPD) esters, a group of glycerol-derived chemical contaminants (1,2,3-propanotriol), potentially toxic, formed during the refining process of vegetable oil. Bovine milk fat obtained from the complex biosynthesis in the mammary gland has potential as a technological alternative to replace palm oil and its fractions for the production of structured lipids to be used in infant formulas. Its application as a substitute is due to its composition and structure, which resembles breast milk fat, and essentially to the preferential distribution pattern of palmitic acids (C16:0) with approximately 85% distributed at the sn-1 and sn-2 position of triacylglycerol. This review will address the relationship between the chemical composition and structure of lipids in infant nutrition, as well as the potential of bovine milk fat as a basis for the production of structured lipids in substitution for the lipid phase of vegetable origin currently used in infant formulas.


Assuntos
Leite Humano , Leite , Animais , Ácidos Graxos , Feminino , Humanos , Lactente , Fórmulas Infantis , Ácido Palmítico , Triglicerídeos
18.
J Am Oil Chem Soc ; 99(11): 943-950, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36619665

RESUMO

Oleogels based on sterols such as ß-sitosterol blended with the sterol ester γ-oryzanol are a very interesting class of systems, but there are aspects of their formation and structure that remain elusive. It has previously been shown that a methyl group on the C30 position of the sterol-ester plays an important role in gelation. This work explored the effect that having C30 methyl groups on both the sterol and the sterol-ester had on the gelation process and subsequent gel structure. Lanosterol and saponified γ-oryzanol (which was synthesized as part of this study) were identified as materials of interest, as both feature a methyl group on the C30 position of their steroidal cores. It was observed that both sterols formed gels when blended with γ-oryzanol, and also that lanosterol gelled sunflower oil without the addition of γ-oryzanol. All of these gels were significantly weaker than that formed by ß-sitosterol blended with γ-oryzanol. To explore why, molecular docking simulations along with AFM and SAXS were used to examine these gels on a broad range of length scales. The results suggest that saponified γ-oryzanol-γ-oryzanol gels have a very similar structure to that of ß-sitosterol-γ-oryzanol gels. Lanosterol-γ-oryzanol gels and pure lanosterol gel, however, form with a totally different structure facilitated by the head-to-tail stacking motif exhibited by lanosterol. These results give further evidence that relatively slight changes to the molecular structure of gelators can result in significant differences in subsequent gel properties.

19.
Foods ; 10(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34829043

RESUMO

The cold-pressed pumpkin seed oil by-product (POB) was evaluated for its application as a natural fat substitute and stabilizer in the reduced-fat salad dressings. For this aim, the samples were prepared by combining the xanthan gum (0.2-0.4 g/100 g), POB (1.0-5.0 g/100 g), egg yolk powder (3 g/100 g), and sunflower oil (10-30 g/100 g) in 17 different formulations. The optimization was carried out using response surface methodology (RSM) and full factorial central composite design (CCD). Results showed that all samples presented the shear-thinning (or pseudoplastic) flow behavior with 3.75-16.11 Pa·sn and 0.18-0.30, K and n values, respectively. The flow behavior rheological data were fitted to a power-law model (R2 > 0.99). The samples with high POB and low oil content showed similar K and n values compared to high oil content samples. Additionally, the dynamic rheological properties and three interval thixotropic test (3-ITT) were determined. The G' value was larger than G″ in all frequency ranges, indicating viscoelastic solid characteristics in all samples. The optimum formulation was determined as 0.384% XG, 10% oil, and 3.04% POB. The samples prepared with the optimum formulation (POBLF-SD) were compared to low-fat (LF-SD), and high-fat (HF-SD) control salad dressing samples based on the rheological properties, emulsion stability, oxidative stability, zeta potential, and particle size. The oxidation kinetic parameters namely, IP, Ea, ΔS++, and ΔG++ showed that the oxidative stability of salad dressing samples could be improved by enriched by POB. The results of the present study demonstrated that POB could be considerably utilized as a natural fat substitute and stabilizer in salad dressing type emulsions.

20.
Perspect. nutr. hum ; 22(1): 89-98, ene.-jun. 2020.
Artigo em Espanhol | LILACS | ID: biblio-1346667

RESUMO

Resumen Antecedentes: existe evidencia científica sobre la detección y reconocimiento del sabor a grasa en las papilas gustativas, y sobre la relación entre las propiedades sensoriales de los lípidos en los alimentos, la nutrición y la salud pública. Objetivo: presentar los avances investigativos en la cualidad del sabor a grasa y las estrategias actuales para lograr el cumplimiento de las recomen daciones del consumo de lípidos. Resultados: existen bases fisiológicas para afirmar que el sabor graso constituye uno de los gustos básicos, en los que están identificados sus posibles receptores y polimorfismos. La sensibilidad de estos receptores a los ácidos grasos se afecta por el consumo de grasa. La grasa dietaria se puede reducir cambiando los métodos de cocción y en la industria alimentaria usando reemplazantes de grasa. Conclusión: el gusto graso podría estar modulado por factores genéticos y ambientales. Existen variantes genéticas de los receptores y su sensibili dad depende de la grasa dietaria. Los reemplazantes de grasa son una alternativa para reducir su aporte alimentario.


Abstract Background: Scientific evidence exists on the detection and recognition of the'fatty taste' as one of the tastes sensed by taste buds, and around the sensory properties of fats in foods as related to nutrition and public health. Objective: Present research advances in the quality of the fatty flavor and current strategies to achieve compliance with the recommendations for lipid consumption. Results: There is physiological basis for affirming that the fatty taste constitutes one of the basic tastes, in which its possible receptors and polymorphisms are identified. Taste sensitivity to fatty acids is affected by the consumption of lipids. Dietary fat consumption can be reduced by changing cooking methods and in the food industry by using fat replacers. Conclusion: The fatty taste could be modulated by genetic and environmental factors. Genetic variants exist in taste receptors and their sensitivity depends on dietary fat consumption. Fat replacers are an alternative to help reduce dietary intake.


Assuntos
Paladar , Gorduras , Ácidos Graxos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...